
Parallelizing Accelerographic Records Processing
Ronaldo Canizales

Department of Computer Science
Colorado State University

Colorado, USA

Luis Mixco
Observatorio de Amenazas y Recursos Naturales

Ministerio de Medio Ambiente y Recursos Naturales
San Salvador, El Salvador

Jedidiah McClurg
Department of Computer Science

Colorado State University
Colorado, USA

Abstract—Strong-motion processing holds paramount impor-
tance in earthquake engineering and disaster risk management
systems. By leveraging parallel loops and task-parallelism tech-
niques, we address computational challenges posed by large-scale
accelerographic datasets. Through experimentation with more
than one million data points from six real-world seismic events,
our approach achieved speedups of up to 2.9x, demonstrating
the effectiveness of parallel programming in accelerating seismic
data processing. Our findings highlight the significance of parallel
programming techniques in advancing seismological research and
enhancing earthquake mitigation strategies.

Index Terms—strong-motion data, parallel processing, natural
disaster management, OpenMP, Fortran, C++

I. INTRODUCTION

Earthquakes are well-known for their unpredictability and
potential to cause significant damage. These events have
profound and far-reaching impacts on both human societies
and the environment. One of the most devastating earthquakes
in recent history occurred in 2004 in Sumatra, Indonesia,
triggering a massive tsunami that affected the entire Indian
Ocean region, and resulting in approximately 230,000 fatalities
[13]. The 2015 Nepal earthquake caused significant damage
to the Himalayan region, with economic losses amounting to
one-third of its gross domestic product for that year [19].
Similarly, in February 2023, a powerful earthquake struck
southeastern Turkey and Syria, causing over 50,000 fatalities
and widespread destruction [11]. Furthermore, seismic events
such as the Gyeongju and Pohang earthquakes in 2016 and
2017 in the Korean Peninsula have underscored the importance
of ground-motion data collection and analysis for ensuring the
stability of critical infrastructure such as nuclear power plants
[20], and have highlighted the critical need for seismic hazard
assessment and disaster risk reduction strategies in earthquake-
prone areas, such as the Indian subcontinent [18].

Earthquake-resistant structural design is primarily con-
cerned with the tradeoff between potential for local earthquake
activity levels and the ability of structures to resist damage,
and relies on seismic data collection and analysis. With
numerous data analysis schemes available, ensuring accurate
interpretation and utilization of the data is crucial [3]. Large
seismic monitoring networks generate vast amounts of data
that require efficient archiving, dissemination, visualization,
and real-time analysis [6]. These records, obtained from
strong-motion accelerograph machines, are indispensable for
hazard estimation and site-effect studies, forming the backbone
of seismic research [18]. Processing strong ground motion

Fig. 1. Seismic station and accelerograph [26, 22]

data efficiently can mitigate seismic hazards and gain valuable
insights into site-specific effects [5].

In this paper, we explore a parallelization-based approach
for improving the performance of vital strong-motion process-
ing software used in El Salvador. Although various techniques
for parallelizing generic programs exist, these approaches are
not straightforward to use in the context of real-world seismo-
logical software because of complex process dependencies,
legacy programming languages and APIs, mixed input/output
data formats, and intrinsically distributed data sources.

Specifically, we focus on software used in El Salvador’s
Observatory of Natural Threats. In this context, despite us-
ing modern technology for sensing, distributing, storing, and
visualizing seismic-related data, the core calculations needed
for processing strong-motion records are performed using
legacy Fortran code. In this paper, we show how to perform
a careful analysis of input/output data dependencies, and
apply techniques such as parallelizing loops and adding task-
parallelism, producing an optimized version of the existing
sequential implementation.

To our knowledge, our approach is the first to fully par-
allelize the processing of accelerographic records when all
three signal components are analyzed, leveraging the robust
Salvadoran strong-motion sensor network. We demonstrate the
utility of our approach by processing data from 6 strong-
motion events in El Salvador. On this data, our work out-
performs the original sequential implementation by a factor
of 2.6x to 2.9x, benefiting seismology research and natural
disaster management, and aiding impact mitigation on society.

II. BACKGROUND: ACCELEROGRAPHIC RECORDS
PROCESSING

When a seismic event occurs, proximal strong-motion sen-
sors register its effects – Figure 1 shows an example of

1

such sensors. Each sensor produces data files capturing three
distinct components: longitudinal, transversal, and vertical
motions. These raw data files, denoted as uncorrected versions,
are stored with a V1 extension, and contain the ground’s
acceleration, velocity, and displacement over a defined tem-
poral window. The number of files needing to be processed
per seismic event depends on nearby sensors’ availability and
the event’s magnitude. In the following, we will outline the
processing steps for each file.

The components of the accelerographic data (e.g., Figure
2) are individually stored in files named according to the
format [station][comp].v1. Subsequently, a Hamming band-
pass filter is applied to each component, utilizing default
parameters. This processing step generates corrected versions
of the signals, which are then saved with a V2 extension.

-2.000

-1.000

0.000

1.000

2.000

cm
/s
^2

Acceleration

-0.050
-0.025
0.000
0.025
0.050

cm
/s

Velocity

-0.003
-0.002
0.000
0.002
0.003

0 5 10 15 20 25 30 35

cm

Displacement

Time(s)

Fig. 2. Accelerographic data (one component)

Following this correction, a Fourier transformation is per-
formed on each signal (e.g, Figure 3) resulting in files marked
with an F extension. Notably, the velocity Fourier spectrum
of each signal holds significant importance, as its analysis
yields the low-pass frequency (FPL) and low-stop frequency
(FSL) parameters, highlighted in red in Figure 3. These are
used in the definitive acceleration baseline correction of each
signal. Moreover, the peak ground acceleration (PGA) values
are extracted and archived.

5.0E-03

5.0E-02

5.0E-01

5.0E+00

ga
l*

s

Acceleration

5.0E-04

5.0E-02

5.0E+00

0.02 0.2 2 20

cm
*s

Displacement

1.0E-05

1.0E-03

1.0E-01

cm
/s

^2

Velocity

Period (s)

Fig. 3. Inflection point in the velocity Fourier spectrum (one component),
indicates the values of the FPL & FSL signal filtering parameters.

The final corrected signals are derived by applying another
Hamming band-pass filter, tailored with the appropriate FPL
and FSL parameters obtained from the Fourier analysis, and
are subsequently stored in V2 files.

The most computationally intensive operation involves cal-
culating the Response spectrum for each corrected signal (e.g.,
Figure 4), saved with an R extension. This spectrum provides
valuable insights into the response characteristics of various
building types during seismic events.

0

5

10

ga
l*

s

Acceleration

0.002

0.020

0.1 1

cm
*s

Displacement
0.0

0.2

0.4

cm
/s

^2

Velocity

Period (s)

Fig. 4. Response spectrum (one component)

Finally, 18 Global Earthquake Model (GEM) files are
created from the V2 and R files. These serve as crucial
inputs for subsequent processes. This information resulting
from this processing of strong-motion files is of considerable
significance to structural engineers during the design phase
of new buildings, informing their decisions and enhancing
structural integrity.

III. SEQUENTIAL IMPLEMENTATION

The entire process used in the sequential version is seg-
mented into 20 sequential steps, shown in Figure 5. Each
step, which we will refer to as a process, is either a function
embedded within C++ code, or an entire Fortran program.

While certain processes are lightweight, others entail sub-
stantial input/output operations, calculations, or plotting tasks.
The following section describes how to optimize this sequen-
tial implementation (Figure 6).

IV. OPTIMIZING THE SEQUENTIAL IMPLEMENTATION

Initial optimization involves the elimination of unnecessary
processes. Detailed analysis of the process uncovered the
following redundancies.

1) The plotting of uncorrected signals (process #6) is
unnecessary, as the generated plots are not utilized
within the program. Additionally, the [station].ps files
produced are subsequently overwritten in process #15.

2) Segmentation of each component of uncorrected signals
into individual files (process #12) is superfluous, since
no modifications are applied to V1 files during execution.

3) Overwriting intermediate files (process #14) is redun-
dant, as these files mirror those obtained earlier in
process #5.

2

S
eq

ue
nt

ia
l i

m
pl

em
en

ta
tio

n
0. Initialize flags x10txt

1. Gather input
data files

xN<s>.v1

<s>.v1 list

2. Initialize filter
parameters

<s>.v1 list

<s><c>.v1 list filter params

3. Separate data
by components

xN<s><c>.v1 list

x3N<s><comp>.v1

<s>.v1

4. Apply default
filters

x3Nfilter params

x3Nmax values

<s><comp>.v1

<s><comp>.v2

5. Initialize
metadata files

<s>.v1 list

acc-graph fourier response

6. Plot
accelerograph

x3Nacc-graph

xN<s>.ps

<s><comp>.v2

7. Apply fourier
transformation

x3Nfourier

x3N<s><comp>.f

<s><comp>.v2

8. Initialize
metadata files

filelist
fourier-graph

9. Plot Fourier
spectrum

x3Nfourier-graph
xN<s>f.ps

<s><comp>.f

10. Obtain FSL
& FPL values

xNfourier-graph
filter params

<s><graph>.f

16. Response
spectrum calc.

x3Nresponse

 x3N<s><comp>.r

<s><comp>.v2

17. Initialize
metadata file

filelist

response-graph

18. Plot
Response spect.

x3Nresponse-graph

xN<s>r.ps

<s><comp>.r

19. Generate
GEM files

 x3N
 x3N

response

x9N
x9N

<s><comp>.v2
<s><comp>.r

<s><comp>2<A|V|D>

<s><comp>R<A|V|D>

11. Initialize flags x10txt

S
eq

ue
nt

ia
l i

m
pl

em
en

ta
tio

n

12. Separate data
by components

xN<s><c>.v1 list

x3N<s><comp>.v1

<s>.v1

13. Obtain
corrected signals

x3Nfilter params

x3Nmax values

<s><comp>.v1

<s><comp>.v2

14. Initialize
metadata files

<s>.v1 list

acc-graph fourier response

15. Plot
accelerograph

x3Nacc-graph

xN<s>.ps

<s><comp>.v2

Heavy I/O
Heavy FLOPS
Plotting

C++
Fortran
Inputs
Outputs
Files

S
eq

ue
nt

ia
l i

m
pl

em
en

ta
tio

n

0. Initialize flags x10txt

1. Gather input
data files

xN<s>.v1

<s>.v1 list

2. Initialize filter
parameters

<s>.v1 list

<s><c>.v1 list filter params

3. Separate data
by components

xN<s><c>.v1 list

x3N<s><comp>.v1

<s>.v1

4. Apply default
filters

x3Nfilter params

x3Nmax values

<s><comp>.v1

<s><comp>.v2

5. Initialize
metadata files

<s>.v1 list

acc-graph fourier response

6. Plot
accelerograph

x3Nacc-graph

xN<s>.ps

<s><comp>.v2

7. Apply fourier
transformation

x3Nfourier

x3N<s><comp>.f

<s><comp>.v2

8. Initialize
metadata files

filelist
fourier-graph

9. Plot Fourier
spectrum

x3Nfourier-graph
xN<s>f.ps

<s><comp>.f

10. Obtain FSL
& FPL values

xNfourier-graph
filter params

<s><graph>.f

16. Response
spectrum calc.

x3Nresponse

 x3N<s><comp>.r

<s><comp>.v2

17. Initialize
metadata file

filelist

response-graph

18. Plot
Response spect.

x3Nresponse-graph

xN<s>r.ps

<s><comp>.r

19. Generate
GEM files

 x3N
 x3N

response

x9N
x9N

<s><comp>.v2
<s><comp>.r

<s><comp>2<A|V|D>

<s><comp>R<A|V|D>

11. Initialize flags x10txt

S
eq

ue
nt

ia
l i

m
pl

em
en

ta
tio

n

12. Separate data
by components

xN<s><c>.v1 list

x3N<s><comp>.v1

<s>.v1

13. Obtain
corrected signals

x3Nfilter params

x3Nmax values

<s><comp>.v1

<s><comp>.v2

14. Initialize
metadata files

<s>.v1 list

acc-graph fourier response

15. Plot
accelerograph

x3Nacc-graph

xN<s>.ps

<s><comp>.v2

Heavy I/O
Heavy FLOPS
Plotting

C++
Fortran
Inputs
Outputs
Files

Fig. 5. Sequential accelerographic records processing implementation

In summary, the exclusion of processes #6, #12, and #14
is feasible, and has no impact on the final output. This
optimization reduces the overall execution time and avoids
overwriting data. The resulting optimized sequential version
is shown in Figure 7.

Sequential Original

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

f f f f f f f f f f f f f f f

0 1 2 3 4 5 7 8 9 1
0

1
1

1
3

1
5

1
6

1
7

1
8

1
9

f f f f f f f f f f f f

Sequential Optimal

Heavy I/O Heavy FLOPS Plotting

Heavy I/O Heavy FLOPS Plotting

Fig. 6. Original sequential version: processes overview

Sequential Original

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

f f f f f f f f f f f f f f f

0 1 2 3 4 5 7 8 9 1
0

1
1

1
3

1
5

1
6

1
7

1
8

1
9

f f f f f f f f f f f f

Sequential Optimal

Heavy I/O Heavy FLOPS Plotting

Heavy I/O Heavy FLOPS Plotting

Fig. 7. Optimized sequential version: processes overview

V. PARTIALLY PARALLELIZED IMPLEMENTATION

Establishing the foundation for parallelizing the workflow
involves delineating all processes and their dependencies,
encompassing both inputs and outputs, as shown in Figure 9.
These processes have been categorized into nine stages, with
each stage slated for parallelization employing the specific
strategies outlined on the right-hand side of the figure (we
will elaborate further on these strategies shortly). We analyzed
the reordering of processes to ensure that it upholds valid
execution sequences while maximizing processor utilization
across each stage.

We employed three distinct parallelization strategies, delin-
eated as follows.

1) Processes #0, #1, #10, and #19 are exclusively imple-
mented in C++. Thus, the initial focus was on paralleliz-
ing these processes. Detailed explanations of how this
was performed are furnished in subsequent sections.

2) Processes #2, #5, #8, and #17 are implemented in
Fortran, and exhibit minimal execution times, prompting
their parallelization through C++ OpenMP tasks.

3) Processes #9, #15, and #18, also implemented in For-
tran, are characterized by the independent processing of
distinct signal types, and plot generation. Consequently,
these tasks were parallelized using C++ OpenMP tasks.

Using this strategy, we were able to parallelize 5 out of
11 stages, as depicted in Figure 8. The specifics of the
parallelization for each stage are detailed below.

0 & 1 2, 5, 8 & 17 3 4 7 9, 15 & 1810 11 13 16 19

f f f f ff f

Partial Parallelization

0 & 1 2, 5, 8 & 17 3 4 7 9, 15 & 1810 11 13 16 19

f f f f ff f

Full Parallelization

Task parallelism Parallel loopsHeavy I/O Heavy FLOPS Plotting

Task parallelism Parallel loopsHeavy I/O Heavy FLOPS Plotting

Task parallelism Parallel loopsHeavy I/O Heavy FLOPS Plotting

Fig. 8. Partial parallelization: 5 out of 11 stages are executed in parallel.

3

VII

Task

Task

Seq

Seq

Seq

Loop

Seq

Seq

Loop

Task

Task parallelism
Parallel loops

First parallel version

Loop

Loop

Loop

Loop

Loop

Second parallel version

Time Base Final SpeedUp

I & II 0.47 0.27 1.74x

III 0.98 0.72 1.36x

IV 3.51 2.28 1.54x

V 3.15 2.40 1.31x

VI 0.04 0.02 2x

VIII 3.39 2.30 1.47x

IX 23.9 5.97 4x

X 3.33 2.79 1.19x

XI 2.98 1.87 1.59x

I

II

III

IV

V

VI

VIII

IX

X

XI

Stage Partial
Parallel

Full
Parallel

0 1
f list

2

cl fp

5

a-g f r f-g

8 17

r-g

3

cv1

v1

4

mv cv2
7

cf

9

fps

10

fp

13

cv2 mv

15

aps

16

cr

18

rps

11

f

19

cg2 cgr

r

a-g r-g f-g

Individual processes dependencies

Heavy I/O Plotting
Heavy FLOPS

0 & 1 2, 5, 8 & 17 3 4 7 9, 15 & 1810 11 13 16 19

f f f f ff f

Partial Parallelization

0 & 1 2, 5, 8 & 17 3 4 7 9, 15 & 1810 11 13 16 19

f f f f ff f

Full Parallelization

Task parallelism Parallel loopsHeavy I/O Heavy FLOPS Plotting

Task parallelism Parallel loopsHeavy I/O Heavy FLOPS Plotting

Task parallelism Parallel loopsHeavy I/O Heavy FLOPS Plotting

Fig. 9. Processes reordering into 11 stages. Parallel approaches for each
individual stage (rows) for the first and second parallel versions (right-most
columns) are detailed, as well as input/output dependencies for each process.

A. Parallelizing Stages I and II

Since a limited number of equally lightweight processes are
involved, we chose a task-parallelization approach. A parallel
pragma is configured to utilize between 2 and 4 processors for
task execution. The single pragma restricts task assignment to
only the main processor. A task-wait pragma is necessary to
synchronize the execution between both stages.

In Stage I, processes operate independently and do not
require inputs. In Stage II, all processes create metadata files
used in further stages based on the [station][comp].v1 files
list generated during Stage I.

1 #pragma omp parallel{
2 #pragma omp single{
3 #pragma omp task//Stage I processes:
4 InitializeFlags();//P#0
5 #pragma omp task
6 GatherInputFiles();//P#1
7 #pragma omp taskwait
8

9 #pragma omp task//Stage II processes:
10 InitializeFilterParams(); //P#2
11 #pragma omp task
12 InitMetadata(<acc-graph>,<fou>,<res>);//P#5
13 #pragma omp task
14 InitMetadata(<fourier-graph>); //P#8
15 #pragma omp task
16 InitMetadata(<response-graph>); //P#17
17 #pragma omp taskwait
18 } }

B. Parallelizing Stage VI

Process #10 identifies inflection points within the velocity
Fourier spectrum for each of the three components. Concurrent
analysis is conducted for each component.
CalculateInflectionPoint within the parallel for-loop

employs an early-termination strategy while searching for
slope changes in data points for periods greater than one
second. Although additional parallelization opportunities exist,
they were not pursued, since execution time was already small.

1 void AnalyzeFourier(){
2 //Read metadata (fourier-graph file)
3 for(int i=0; i<N; i++){
4 string files[3];//Input: <comp>.f files
5 float fsl[3], fpl[3];
6 //Analyze L, T, and V plots
7 #pragma omp parallel for
8 for(int j=0; j<3; j++)
9 CalculateInflectionPoint(

10 files[j], fsl[j], fpl[j]);
11 //Output: FSL & FPL values (filter param)
12 } }

C. Parallelizing Stage X

Process #19 generates 18 GEM files for each input file.
Specifically, six files are generated per V2 and R file pair. Con-
current reading of each batch of files is facilitated in this stage,
leveraging the maximum number of available processors, given
the typically substantial quantity of GEM files produced.

The function SetDataApart operates on each V2 or R file
within the parallel for-loop, generating three corresponding
GEM files. This parallelized approach optimizes efficiency by
distributing the workload across all available processors.

1 void GenerateGEMFiles(){
2 //Read metadata (response file)
3 string files[N*2];
4 for(int i=0; i<N; i++){
5 files[i*2] = //Input: <s>.v2 files
6 files[i*2+1] = //Input: <s>.r files
7 }
8 #pragma omp parallel for
9 for(int i=0; i<N*2; i++){

10 bool isR = //flag (odd/even)
11 SetDataApart(files[i], isR);
12 //Output: <s><comp>GEM<2|R><A|V|D> files
13 } }

D. Parallelizing Stage XI

These plotting processes operate independently from one
another and operate on different input data. They receive V2,
F, and R files as inputs and generate corresponding plot files,
namely [station].ps, [station]f.ps, and [station]r.ps.

1 #pragma omp parallel{
2 #pragma omp single{
3 #pragma omp task//Stage XI processes:
4 PlotFourierSpectrum();//P#9
5 #pragma omp task
6 PlotAccelerograph();//P#15
7 #pragma omp task
8 PlotResponseSpectrum();//P#18
9 #pragma omp taskwait

10 } }

4

Expanding on this, the V2 files contain corrected signals,
the F files store Fourier-transformed signals, and the R files
comprise Response spectrum data. The resultant plots provide
visual representations of the analyzed accelerographic data,
aiding in interpreting and understanding the seismic event
under investigation.

VI. FULLY PARALLELIZED IMPLEMENTATION

The parallelization of the remaining processes requires
either Fortran OpenMP pragmas or executing binary files con-
currently within temporary folders. This implies the transfer
of all input and output data to and from these folders. We
employed two distinct approaches, outlined as follows:

• The parallelization approach for Processes #3 and #16 is
via Fortran OpenMP do-loops, enabling efficient concur-
rency within the existing Fortran codebase.

• Concurrent execution of processes #4, #7, and #13 inside
temporary folders with required data transfer is achieved
through C++ OpenMP for-loops.

All processes except #11 are parallelized (Fig. 10), due to its
execution time being less than two milliseconds on average.
We describe specific approaches used in each stage.

0 & 1 2, 5, 8 & 17 3 4 7 9, 15 & 1810 11 13 16 19

f f f f ff f

Partial Parallelization

0 & 1 2, 5, 8 & 17 3 4 7 9, 15 & 1810 11 13 16 19

f f f f ff f

Full Parallelization

Task parallelism Parallel loopsHeavy I/O Heavy FLOPS Plotting

Task parallelism Parallel loopsHeavy I/O Heavy FLOPS Plotting

Task parallelism Parallel loopsHeavy I/O Heavy FLOPS Plotting
Fig. 10. Full parallelization: all stages are executed in parallel.

A. Parallelizing Stage III

Process #3 concurrently collects uncorrected acceleration
data from all [station].v1 files and generates an individual
file [station][comp].v1 for each component.

This task is accomplished using Fortran OpenMP pragmas,
including omp parallel and omp do, which leverage all
available processors for enhanced parallel execution efficiency.

1 c Read data (<station><comp>.v1 list file)
2 C$OMP PARALLEL
3 C$OMP DO PRIVATE(<variables>)
4 do i=1,N
5 c Read acceleration data
6 open(unit=i*4,file=..,status=’old’) -> Input:<s>.v1
7 c Write acceleration data per component
8 open(unit=i*4+1,file=...) -> Output: <s>l.v1
9 open(unit=i*4+2,file=...) -> Output: <s>t.v1

10 open(unit=i*4+3,file=...) -> Output: <s>v.v1
11 end do
12 C$OMP END DO
13 C$OMP END PARALLEL

B. Parallelizing Stage IX

Process #16 starts by extracting metadata from the
response file, that is, the list of individual component
[station][comp].v2 file names. Then, each file is read in

parallel. The elastic response spectra for acceleration, velocity
and displacement are calculated for each component.

It is important to note that this process has a sequential
complexity of O(9000 ∗N ∗D2) where N is the number of
input V1 files, and D is the average number of individual data
points contained in each V1 file.

Lastly, output data is stored in individual [station][comp].r
files for each component. The response spectrum data is used
in processes #18 and #19, which generate plots and create
individual GEM files, respectively.

This parallelization is particularly significant for this pro-
cess, because it not only takes the longest to execute, but
also achieves the highest speedup, as shown in Figure 11 of
the experimental results. We use all available processors to
maximize efficiency in this optimization effort.

1 c Read metadata (response file)
2 C$OMP PARALLEL
3 C$OMP DO PRIVATE(<variables>)
4 do i=1,<3N> -> Each component in parallel
5 c Read acceleration data -> Input: <s><comp>.v2
6 open(unit=2*i,file=...,status=’old’)
7 c Calculate Response Spectrum
8 c Write output data
9 open(unit=2*i+1,file=...) -> Output: <s><comp>.r

10 end do
11 C$OMP END DO
12 C$OMP END PARALLEL

C. Parallelizing Stages IV and VIII

Processes #4 and #13 share the same functionality. Specifi-
cally, they read the filter parameters file to extract the values of
FPL and FSL, and take all the individual [station][comp].v1
files as input. Subsequently, a Hamming band-pass filter is
applied to each signal, resulting in a corrected version of the
acceleration values. These corrected values are then stored in
individual [station][comp].v2 files.

1 void ParallelizeCorrection(){
2 //Read data (filter params file)
3 string files[N*10];
4 for (int i = 0; i < N; i++)
5 files[10*i] = //Input: <s><comp>.v1 files
6 for (int j = 0; j < 3; j++)
7 for (int k = 1; k <= 3; k++)
8 getline(i_data, files[10*i+3*j+k]);
9 #pragma omp parallel for

10 for (int i = 0; i < N; i++)
11 //Create temp 10*i folder and params file
12 for (int j = 0; j < 3; j++)
13 for (int k = 1; k <= 3; k++)
14 //Move 10*i+3*j+k <s><comp>.v1 file
15 for (int i = 0; i < N; i++)//Seq. to avoid races
16 //Move EXE to 10*i folder
17 #pragma omp parallel for
18 for (int i = 0; i < N; i++)
19 for (int j = 0; j < 3; j++)
20 //Input: Move 10*i+3*j+2 <s>.v1 file
21 //Apply filters to signals on 10*i folder
22 for (int j = 0; j < 3; j++)
23 //Output: Move 10*i+3*j+3 <s>.v2 file
24 //Output: (max values file)
25 #pragma omp parallel for
26 for (int i = 0; i < N; i++)
27 //Delete remaining temp files
28 }

5

However, the parallelization strategy for these processes
differs significantly from the approaches used in the other
stages. Due to the impracticality of modifying the original
Fortran programs, multiple instances are executed concurrently
within separate folders. The primary task involves creating
these folders with all the necessary files, and subsequently
copying the results back. This approach maximizes processor
utilization by harnessing all available processors.

D. Parallelizing Stage V

Process #7 is responsible for computing the Fourier spectra
for acceleration, velocity, and displacement of each component
stored in all [station][comp].v2 files, with the results saved in
[station][comp].f files.

The parallelization strategy employed for this process mir-
rors that of Stages IV and VIII, as detailed in the preceding
section. All available processors are utilized to optimize com-
putational efficiency.

1 void ParallelizeFourier(){
2 //Read data (fourier file)
3 string files[N*3];
4 for (int i = 0; i < N; i++)
5 files[3*i] = //Input: Folder name
6 files[3*i+1] = //Input: <s><comp>.v2 files
7 files[3*i+2] = //Input: <s><comp>.f files
8 #pragma omp parallel for
9 for (int i = 0; i < N; i++)

10 //Create temp 3*i folder & fourier file
11 for (int i = 0; i < N; i++)//Seq. to avoid races
12 //Move EXE to 3*i folder
13 #pragma omp parallel for
14 for (int i = 0; i < N; i++)
15 //Input: Move 3*i+1 <s><comp>.v2 file
16 //Apply Fourier Transform on 3*i folder
17 //Output: Move 3*i+2 <s><comp>.f file
18 //Delete remaining temp files
19 }

VII. EXPERIMENTS AND RESULTS

A. Experimental Setup

Our experimental dataset comprises 71 unprocessed ac-
celerograph files from 6 seismic events that occurred in El
Salvador over the past decade. These events represent a
diversity of stations affected, and have varying numbers of
data points within each raw file, ranging from 7,300 to 35,000.

The original sequential implementation consisted of 2,297
lines of Fortran code. Our fully-parallelized version was im-
plemented with 653 lines of C++ code and an additional 337
lines of Fortran code.

The experimental platform used for the experiments was a
12th Gen Intel Core i5-12450H, 2.00 GHz, 8 Cores, 12 Logical
Processors, 16 GB of RAM, 640 KB of L1 cache, 6.2 MB of
L2 cache, and 12 MB of L3 cache.

B. Results per Stage

For this experiment, we assessed the parallel performance
of each individual stage using data from the seismic event with
the most data in the experimental dataset, i.e., 384, 000 data
points distributed across 19 V1 files.

Figure 11 illustrates that stage IX exhibits the longest
execution time among all stages, accounting for 57.2% of the
original sequential implementation. However, Stage IX also
achieves the highest speedup, reaching 5.14x.

0

10

20

30

40

50

60

260

270

280

I & II III IV V VI VIII IX X XI

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Stage

Sequential Original Full Parallelization

Fig. 11. Speedup per individual Stage (19 Files, 384k Data points)

Other parallel stages successfully reduce the sequential
execution time by more than half, achieving speedups of 2.2x,
2.0x, 2.6x, and 2.1x for stages I-II, IV, VI, and XI, respectively.
Furthermore, the remaining parallel stages achieve speedups
of 1.8x, 1.7x, 1.9x, and 1.5x for stages III, V, VIII, and X,
respectively. Overall, for this event, the speedup stands at
2.88x, as indicated in the bottom row of Table I.

TABLE I
EXPERIMENTAL RESULTS

Event V1
Files

Data
Points

Seq.
Ori.*

Seq.
Opt.*

Part.
Par.*

Full
Par.*

Speed
Up

Nov’18 5 56K 76.6 64.1 61.9 32.1 2.39x
Apr’18 5 115K 149.6 127.1 126.4 56.5 2.65x
Jul’19 9 145K 174.9 161.3 154.8 68.1 2.57x
Apr’17 15 309K 358.6 351.2 327.9 131.5 2.73x
May’19 18 361K 439.5 392.6 378.9 155.3 2.83x
Jul’19 19 384K 483.7 426.0 412.2 168.1 2.88x

*Execution times are measured in seconds.

C. Results per Event

All available uncorrected accelerographs (V1 files) for each
seismic event in the experimental dataset were processed using
the four implementations explained in sections III to VI:

• Sequential Original: contains 20 sequential processes.
• Sequential Optimized: contains 17 sequential processes.
• Partially Parallelized: utilizes 5 parallel stages.
• Fully Parallelized: utilizes 10 parallel stages.
Figure 12 shows a visual representation of each implemen-

tation’s execution times, and full data is shown in Table I.
Execution time is linearly proportional to the total amount of
data points. While each implementation offers a performance
improvement over its predecessor, the fully-parallelized ver-
sion demonstrates the most efficiency.

6

0

100

200

300

400

500

Nov/24/2018 Apr/02/2018 Jul/10/2019 Apr/10/2017 May/30/2019 Jul/31/2019

Ti
m

e
(s

ec
on

ds
)

Sequential Original

Sequential Optimal

Partially Parallelized

Fully Parallelized

Fig. 12. Speedup per Event: execution time is proportional to the number of data points in each seismic event.

We observe that the speedup increases proportionally with
the number of total input data points, as illustrated in Figure
13. The overall speedup ranges from 2.4x to 2.9x and appears
to follow a quasi-logarithmic trend (Amdahl’s effect).

1600

1800

2000

2200

2400

2.30

2.50

2.70

2.90

3.10
D

at
a

po
in

ts
 p

er
 se

co
nd

Sp
ee

du
p

Problem Size (Input Data Points per Event)

SpeedUp Data points per second

Fig. 13. Overall speedup in parallel accelerographic records processing:
problem size vs. speedup (purple) and vs. data points per second (green).

The fully-parallelized implementation was able to process
between 1,700 to 2,300 data points per second, a significant
improvement over the original sequential version, which pro-
cessed 800 data points per second on average. This improve-
ment also follows a quasi-logarithmic trend on the problem
size, as shown in Figure 13.

VIII. DISCUSSION & FUTURE WORK

Although the number of seismic events contained in our
experimental dataset is relatively small, it offers a compre-
hensive range of real-world seismic data, generated in differ-
ent geographic locations with a variety of equipment types
and sampling rates. Although we used a relatively low-end
machine for the experiments, and performance may be further
improved on a higher-performance machine, our experimental
platform is reflective of the types of machines used in practice
in the Salvadoran Observatory of Natural Threats. It is worth
noting that the engineering work invested in parallelizing
each stage does not always directly translate to performance

gains. Despite similar levels of effort, Stage IX provides the
most significant improvements. Additionally, different stages
leverage available processors differently, with some using only
a fraction while others fully utilize all available resources.

Our findings indicate potential for leveraging tools like
OpenMP to enhance Accelerographic Records Processing,
though communication overhead remains a concern. We also
observed similarities in array management techniques across
stages IV, VIII, and V, resembling principles seen in MPI or
CUDA programming.

While we believe our approach to be an important step
toward the high-level goal of scaling up strong-motion records
processing, especially in regard to large-scale real-world
datasets, there are engineering and research challenges we
plan to address in future work. Enhancing strong-motion
record processing could involve automatic translation of di-
verse legacy code into a single programming language, such
as C++, and using search-based techniques [25, 10, 24] to
assist in parallelization of the code, which could streamline
development and improve overall efficiency. With adequate
time and resources, similar enhancements could extend to
other seismic-related applications, as well as processes related
to other natural threats, like vulcanology and landslides.

Additionally, there is room for further optimization through
the exploration of advanced parallel processing techniques
like tiling, wavefront scheduling, and the polyhedral model.
Furthermore, scaling our approach to larger experimental
accelerographic datasets presents an exciting opportunity to
assess its performance and scalability in real-world scenarios.

IX. RELATED WORK

A. Strong-Motion Records Databases

Several initiatives worldwide have been dedicated to collect-
ing and disseminating strong-motion data to advance seismic
research and hazard assessment. For instance, the ITACA
project focused on gathering, standardizing, and sharing strong
motion data acquired in Italy since 1972. By 2010, this
database encompassed 7,038 waveforms from analog and
digital instruments recorded during 1,019 earthquakes with
magnitudes reaching 6.9 [23]. Similarly, the Salvadoran Ac-
celerographic Repository stores 6,787 strong motion records

7

from 1,615 seismic events between the years 1966 and 2019.
It scales up quickly; the most recent report shows 241 seismic
events recorded just during December 2023 [21]. Another
example is the Indian Strong Motion Instrumentation Network,
with around 220 accelerograph stations, which provides data
from approximately 300 strong ground motion records from
130 earthquakes [18]. Furthermore, a comprehensive database
has been established to study induced earthquakes in the
Groningen gas field, Netherlands. This repository houses over
8,500 processed ground motion recordings from 87 earth-
quakes, serving as a resource for refining seismic hazard and
risk models and conducting research in site response and
ground motion characteristics [27].

B. Earthquake Engineering and Urban Planning
Despite efforts to enhance safety through urban planning,

indiscriminate development and structural failures persist,
leading to significant loss of life and economic damage [1]. To
address these challenges, there is a need to prioritize the devel-
opment of resilient buildings and emergency response efforts
by mapping vulnerable urban areas and populations. While
progress has been made in evaluating individual facilities and
distributed systems, greater integration and collaboration are
necessary to improve overall seismic resilience [34]. In El Sal-
vador, the original sequential code discussed in this paper was
a component of a large project that united academia, industry,
and governmental agencies with the goal of updating building
design codes. Various software tools are utilized in earthquake
engineering and seismic risk assessment, enabling different
aspects of the analysis process. High-performance computing
clusters enable parallel job configurations for handling build-
ings independently [34]. Neural networks like the multi-layer
perceptron assess urban block vulnerability to earthquakes
[1]. Additionally, software tools such as Obspy [16, 7] and
TSPP [2] are employed for ground-motion processing, aiding
in structural design and seismic evaluation [20].

C. Seismic and Volcanic Observatories
Software plays a crucial role in supporting natural-threat

observatories by processing strong-motion records, like the
ones from El Salvador used in our experiments. A parallel
approach, similar to ours, using Python and MPI, enables
efficient processing of strong-motion files, albeit from vol-
canoes, demonstrating scalability with the number of events
and processor cores [9]. In contrast, sequential software like
Earthworm (developed by the USGS) and packages from the
Alaska Volcano Observatory provide robust tools for seismic
data analysis and real-time monitoring [28, 6]. Additionally,
the waveform suite from the University of Alaska Geophysical
Institute offers MATLAB code for waveform data manipula-
tion, ensuring data integrity and program stability [32]. These
software tools are vital for monitoring seismic and volcanic
activity and conducting research in these fields.

D. Early Warning Systems
Software supporting early warning systems for earthquakes

and tsunamis plays a pivotal role in mitigating the impact

of these natural disasters. The German Indonesian Tsunami
Early Warning System (GITEWS) Project has developed the
SeisComP3 software package, which offers reliable and fast
earthquake location and magnitude estimation capabilities
[13]. SeisComP3 is also used in El Salvador as a real-time
support tool that allows seismic technicians to visualize and
handle customized parameters for magnitude calculations. Fur-
thermore, machine learning approaches, such as Convolutional
Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks, are utilized in Early Earthquake Warning
(EEW) systems to issue alerts promptly [4]. Early warning
systems require rapid data processing and transmission to
provide timely alerts, with mere seconds dedicated to sensor
data acquisition, processing, magnitude estimation, and deci-
sion transmission to the warning server [19, 8, 31]. Overall,
developing and deploying advanced software solutions are
essential for enhancing the effectiveness of early warning
systems, thereby reducing the impact of earthquakes and
tsunamis on vulnerable communities.

E. General purpose seismology research

Parallel programming plays a crucial role in advancing
seismology research by enabling the efficient processing of
strong-motion datasets. Computing Grids provide a platform
for sharing seismic data from diverse sources, facilitating
seismic waveform analysis, and uncovering observed regions’
geological features. The authors of [15] propose a framework
for massively parallel wavelet data processing of seismic
waveforms. Software tools like Seismic Analysis Code offer
capabilities for processing multiple signals concurrently, en-
hancing research productivity and enabling detailed seismic
event analysis [12, 33]. A server-side tool [29] allows parallel
processing of accelerometric waveforms through a combi-
nation of Python for signal processing, Fortran for parallel
acceleration and displacement response spectrum calculation,
and PHP for dynamic plot generation. Moreover, similar to our
approach’s architecture, efforts to parallelize source code using
High-Performance Fortran and OpenMP demonstrate a faster
and more accessible approach to simulating seismic radiation
interactions with near-surface geological structures [5].

Nowadays, a considerable portion of scientific software op-
erates sequentially. For instance, the SEISAN seismic analysis
system provides a comprehensive suite of programs written
primarily in Fortran, supplemented by some C code, facili-
tating earthquake analysis from both analog and digital data
sources [14]. Another example is the open-source software
PASCAL Quick Look eXtended (PQLX), which allows for
detailed analysis of seismographic data records to study am-
bient noise and detect earthquake events reliably [30]. Ad-
ditionally, MATLAB-based software like EQK SRC PARA
enables estimation of earthquake source spectrum spectral
parameters, which are essential for analyzing seismic events
and developing scaling laws for specific study regions [17].

These programming tools offer valuable support for seis-
mologists in analyzing seismic data, understanding earthquake
characteristics, and improving earthquake detection systems.

8

X. CONCLUSION

Our paper introduces a fully-parallelized approach for
strong-motion record processing, marking a significant ad-
vancement over the original sequential version. Leveraging
parallel loops and task parallelization, our method effectively
addresses the challenge of efficiently processing accelero-
graphic data, providing scalability and speedup roughly pro-
portional to problem size. This demonstrates the potential
for parallel programming techniques to enhance scientific
software, playing a pivotal role in advancing seismology
research. By enabling efficient data processing, analysis, and
simulation of seismic events, such software contributes to
a deeper understanding of seismic phenomena and aids in
mitigating their impact on society.

ACKNOWLEDGMENTS

We thank Sanjay Rajopadhye for helpful feedback on an
earlier version of this work. We are grateful to the anonymous
reviewers for their detailed feedback on this paper. The Col-
orado State University co-authors were partially supported by
the US National Science Foundation under grant No. 2318970.

REFERENCES

[1] Rasoul Afsari et al. “Using Artificial Neural Networks to Assess
Earthquake Vulnerability in Urban Blocks of Tehran”. In Remote. Sens.
15.5 (2023), p. 1248.

[2] Jan Baczek et al. “TSPP: A Unified Benchmarking Tool for Time-
series Forecasting”. In CoRR abs/2312.17100 (2023). URL: https://doi.
org/10.48550/arXiv.2312.17100.

[3] David Boore and Julian Bommer. “Processing of strong-motion ac-
celerograms: Needs, options and consequences”. In Soil Dynamics and
Earthquake Engineering 25 (Feb. 2005), pp. 93–115.

[4] Marco Carratù et al. “A deep learning approach for the development
of an Early Earthquake Warning system”. In IEEE International In-
strumentation and Measurement Technology Conference, I2MTC 2022,
Ottawa, ON, Canada, May 16-19, 2022. IEEE, 2022, pp. 1–6.

[5] A. Caserta, V. Ruggiero, and P. Lanucara. “Numerical modelling of
dynamical interaction between seismic radiation and near-surface geo-
logical structures: a parallel approach”. In Computers & Geosciences
28.9 (2002), pp. 1069–1077.

[6] Denise Cervelli, P. Cervelli, and T. Murray. “New Software for Long-
Term Storage and Analysis of Seismic Wave Data”. In AGU Fall
Meeting Abstracts -1 (Nov. 2004), p. 0705.

[7] Derrick J. A. Chambers, M. Shawn Boltz, and Calum J. Chamberlain.
“ObsPlus: A Pandas-centric ObsPy expansion pack”. In J. Open Source
Softw. 6.60 (2021), p. 2696. URL: https://doi.org/10.21105/joss.02696.

[8] Bhanu Chamoli et al. “Development of earthquake early warning
system”. In 6th Annual Conference of the International Society for
Integrated Disaster Risk Management. Oct. 2015.

[9] Guillermo Corneio-Surez et al. “Using Parallel Computing for Seismo-
Volcanic Event Location based on Seismic Amplitudes”. In 2018
IEEE 38th Central America and Panama Convention (CONCAPAN
XXXVIII). 2018.

[10] Ismet Dagli et al. “AxoNN: energy-aware execution of neural network
inference on multi-accelerator heterogeneous SoCs”. In DAC. ACM,
2022, pp. 1069–1074.

[11] Ocione D. Filho et al. “Assessment Of The Impacts Of The 2023
Earthquake In Diyarbakir, Turkey With CBERS-4A Satellite Images”.
In XXIV Brazilian Symposium on Geoinformatics - GEOINFO 2023,
São José dos Campos, SP, Brazil, December 4-6, 2023. Ed. by Flávia F.
Feitosa and Lúbia Vinhas. MCTI/INPE, 2023, pp. 167–174.

[12] Peter Goldstein and A Snoke. “SAC availability for the IRIS commu-
nity”. In Incorporated Institutions for Seismology Data Management
Center Electronic Newsletter 7 (Jan. 2005).

[13] W. Hanka et al. “Real-time earthquake monitoring for tsunami warning
in the Indian Ocean and beyond”. In Natural Hazards and Earth System
Sciences 10.12 (2010), pp. 2611–2622.

[14] Jens Havskov, Peter H. Voss, and Lars Ottemöller. “Seismological
Observatory Software: 30 Yr of SEISAN”. In Seismological Research
Letters 91.3 (Mar. 2020), pp. 1846–1852.

[15] Ljupco Jordanovski, Boro Jakimovski, and Anastas Misev. “Massively
Parallel Seismic Data Wavelet Processing Using Advanced Grid Work-
flows”. In ICT Innovations 2009, Ohrid, Macedonia, 28-30 September,
2009. Ed. by Danco Davcev and Jorge Marx Gómez. Springer, 2009,
pp. 411–419.

[16] Lion Krischer et al. “ObsPy: A bridge for seismology into the scientific
Python ecosystem”. In Computational Science & Discovery 8 (May
2015), p. 014003.

[17] Arjun Kumar et al. “Software to Estimate Spectral and Source Pa-
rameters.” In International Journal of Geosciences 3 (Nov. 2012),
pp. 1142–1149.

[18] Ashok Kumar et al. “Indian Strong Motion Instrumentation Network”.
In Seismological Research Letters 83 (Jan. 2012), pp. 59–66.

[19] Pankaj Kumar et al. “Successful Alert Issuance with Sufficient Lead
Time by Uttarakhand State Earthquake Early Warning System: Case
Study of Nepal Earthquakes”. In Journal of the Geological Society of
India 99 (Mar. 2023), pp. 303–310.

[20] Jin Koo Lee, Jeongbeom Seo, and Sung Whang. “A study on the design
of ground motion database and processing for input seismic evaluation
and nuclear power plant safety”. In Transactions of the Korean Nuclear
Society Spring Meeting (May 2023).

[21] Dennis Lemus. Monthly Seismic Activity Bulletin. Ed. by Ministerio de
Medio Ambiente y Recursos Naturales Observatory of Natural Threats.
Dec. 2023. URL: https : / / www . snet . gob . sv / informacion / ?area =
sismologia (visited on 03/07/2024).

[22] Axel Lloret. Basalt Accelerograph Photo. Ed. by National University
of Cuyo Digital Photo Repository Argentina. Sept. 2020. URL: https:
//fotos.uncuyo.edu.ar/piwigo/picture.php?/3266/category/161 (visited
on 02/23/2024).

[23] Marco Massa et al. “The ITalian ACcelerometric Archive (ITACA):
processing of strong-motion data”. In Bulletin of Earthquake Engi-
neering 8.5 (Oct. 2010), pp. 1175–1187.

[24] Daniel Mawhirter et al. “Dryadic: Flexible and Fast Graph Pattern
Matching at Scale”. In PACT. IEEE, 2021, pp. 289–303.

[25] Jedidiah McClurg et al. “Optimizing Regular Expressions via Rewrite-
Guided Synthesis”. In PACT. ACM, 2022, pp. 426–438.

[26] Kinemetrics Newsletter. Kinemetrics executes 3rd contract with Cal-
tech for California’s earthquake early warning system. Mar. 2017.
URL: https : / / kinemetrics . com / news / kinemetrics - executes - third -
contract - with - caltech - for - californias - earthquake - early - warning -
system/ (visited on 02/23/2024).

[27] Michail Ntinalexis et al. “A database of ground motion recordings, site
profiles, and amplification factors from the Groningen gas field in the
Netherlands”. In Earthquake Spectra 39.1 (2023), pp. 687–701.

[28] Marco Olivieri and John Clinton. “An almost fair comparison between
Earthworm and SeisComp3”. In Seismological Research Letters 83.4
(2012), pp. 720–727.

[29] R. Puglia et al. “Strong-motion processing service: a tool to access
and analyse earthquakes strong-motion waveforms”. In Bulletin of
Earthquake Engineering 16.7 (July 2018), pp. 2641–2651.

[30] Sepideh J. Rastin et al. “PQLX noise model for the URZ station in
the Matata region of New Zealand”. In 10th International Conference
on Information Sciences, Signal Processing and their Applications,
ISSPA 2010, Kuala Lumpur, Malaysia, 10-13 May, 2010. IEEE, 2010,
pp. 17–20.

[31] Govind Rathore et al. “Development and Implementation of a Regional
Earthquake Early Warning System in Northern India”. In. Proceedings
of 17th Symposium on Earthquake Engineering (Vol. 4). July 2023,
pp. 537–544.

[32] Celso Reyes and Michael West. “The Waveform Suite: A robust
platform for manipulating waveforms in MATLAB”. In Seismological
Research Letters 82 (Jan. 2011), pp. 104–110. DOI: 10.1785/gssrl.82.
1.104.

[33] Brian Savage. “sacio: A library for Seismic Analysis Code data files”.
In J. Open Source Softw. 6.67 (2021), p. 3619. URL: https://doi.org/
10.21105/joss.03619.

[34] A Zsarnóczay and GG Deierlein. “PELICUN: A Computational Frame-
work for Estimating Damage, Loss and Community Resilience”. In
Proceedings, 17th World Conference on Earthquake Engineering,
(Sendai: WCEE). 2020.

9

